QoS-Aware Cost Minimization Strategy for AMI Applications in Smart Grid Using Cloud Computing

Author:

Khan Asfandyar,Umar Arif Iqbal,Shirazi Syed HamadORCID,Ishaq Waqar,Shah Mohsin,Assam Muhammad,Mohamed Abdullah

Abstract

Cloud computing coupled with Internet of Things technology provides a wide range of cloud services such as memory, storage, computational processing, network bandwidth, and database application to the end users on demand over the Internet. More specifically, cloud computing provides efficient services such as “pay as per usage”. However, Utility providers in Smart Grid are facing challenges in the design and implementation of such architecture in order to minimize the cost of underlying hardware, software, and network services. In Smart Grid, smart meters generate a large volume of different traffics, due to which efficient utilization of available resources such as buffer, storage, limited processing, and bandwidth is required in a cost-effective manner in the underlying network infrastructure. In such context, this article introduces a QoS-aware Hybrid Queue Scheduling (HQS) model that can be seen over the IoT-based network integrated with cloud environment for different advanced metering infrastructure (AMI) application traffic, which have different QoS levels in the Smart Grid network. The proposed optimization model supports, classifies, and prioritizes the AMI application traffic. The main objective is to reduce the cost of buffer, processing power, and network bandwidth utilized by AMI applications in the cloud environment. For this, we developed a simulation model in the CloudSim simulator that uses a simple mathematical model in order to achieve the objective function. During the simulations, the effects of various numbers of cloudlets on the cost of virtual machine resources such as RAM, CPU processing, and available bandwidth have been investigated in cloud computing. The obtained simulation results exhibited that our proposed model successfully competes with the previous schemes in terms of minimizing the processing, memory, and bandwidth cost by a significant margin. Moreover, the simulation results confirmed that the proposed optimization model behaves as expected and is realistic for AMI application traffic in the Smart Grid network using cloud computing.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3