Abstract
Gallium nitride (GaN) has attracted increased attention because of superior material properties, such as high electron saturation velocity and high electrical field strength, which are promising for high-power microwave applications. We report on a high-performance vertical GaN-based Schottky barrier diode (SBD) and its demonstration in a microwave power limiter for the first time. The fabricated SBD achieved a very low differential specific on-resistance (RON,sp) of 0.21 mΩ·cm2, attributed to the steep-mesa technology, which assists in reducing the spacing between the edge of the anode and cathode to 2 μm. Meanwhile, a low leakage current of ~10−9 A/cm2@−10 V, a high forward current density of 9.4 kA/cm2 at 3 V in DC, and an ideality factor of 1.04 were achieved. Scattering parameter measurements showed that the insertion loss (S21) was lower than −3 dB until 3 GHz. In addition, a microwave power limiter circuit with two anti-parallel diodes was built and measured on an alumina substrate. The input power level reached 40 dBm (10 watts) in continuous-wave mode at 2 GHz, with a corresponding leakage power of 27.2 dBm (0.5 watts) at the output port of the limiter, exhibiting the great potential of GaN SBD in microwave power limiters.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献