Comparison of Sneo-Based Neural Spike Detection Algorithms for Implantable Multi-Transistor Array Biosensors

Author:

Saggese GerardoORCID,Tambaro MattiaORCID,Vallicelli Elia A.ORCID,Strollo Antonio G. M.,Vassanelli StefanoORCID,Baschirotto AndreaORCID,Matteis Marcello DeORCID

Abstract

Real-time neural spike detection is an important step in understanding neurological activities and developing brain-silicon interfaces. Recent approaches exploit minimally invasive sensing techniques based on implanted complementary metal-oxide semiconductors (CMOS) multi transistors arrays (MTAs) that limit the damage of the neural tissue and provide high spatial resolution. Unfortunately, MTAs result in low signal-to-noise ratios due to the weak capacitive coupling between the nearby neurons and the sensor and the high noise power coming from the analog front-end. In this paper we investigate the performance achievable by using spike detection algorithms for MTAs, based on some variants of the smoothed non-linear energy operator (SNEO). We show that detection performance benefits from the correlation of the signals detected by the MTA pixels, but degrades when a high firing rate of neurons occurs. We present and compare different approaches and noise estimation techniques for the SNEO, aimed at increasing the detection accuracy at low SNR and making it less dependent on neurons firing rates. The algorithms are tested by using synthetic neural signals obtained with a modified version of NEUROCUBE generator. The proposed approaches outperform the SNEO, showing a more than 20% increase on averaged sensitivity at 0 dB and reduced dependence on the neuronal firing rate.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3