Real-Time Compact Digital Processing Chain for the Detection and Sorting of Neural Spikes from Implanted Microelectrode Arrays

Author:

Vittimberga Andrea1,Corelli Riccardo1,Scotti Giuseppe1ORCID

Affiliation:

1. Department of Information Engineering, Electronics and Telecommunications-DIET, University of Rome “La Sapienza”, 00184 Rome, Italy

Abstract

Implantable microelectrodes arrays are used to record electrical signals from surrounding neurons and have led to incredible improvements in modern neuroscience research. Digital signals resulting from conditioning and the analog-to-digital conversion of neural spikes captured by microelectrodes arrays have to be elaborated in a dedicated DSP core devoted to a real-time spike-sorting process for the classification phase based on the source neurons from which they were emitted. On-chip spike-sorting is also essential to achieve enough data reduction to allow for wireless transmission within the power constraints imposed on implantable devices. The design of such integrated circuits must meet stringent constraints related to ultra-low power density and the minimum silicon area, as well as several application requirements. The aim of this work is to present real-time hardware architecture able to perform all the spike-sorting tasks on chip while satisfying the aforementioned stringent requirements related to this type of application. The proposed solution has been coded in VHDL language and simulated in the Cadence Xcelium tool to verify the functional behavior of the digital processing chain. Then, a synthesis and place and route flow has been carried out to implement the proposed architecture in both a 130 nm and a FD-SOI 28 nm CMOS process, with a 200 MHz clock frequency target. Post-layout simulations in the Cadence Xcelium tool confirmed the proper operation up to a 200 MHz clock frequency. The area occupation and power consumption of the proposed detection and clustering module are 0.2659 mm2/ch, 7.16 μW/ch, 0.0168 mm2/ch, and 0.47 μW/ch for the 130 nm and 28 nm implementation, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3