EnCNN-UPMWS: Waste Classification by a CNN Ensemble Using the UPM Weighting Strategy

Author:

Zheng Hua,Gu YuORCID

Abstract

The accurate and effective classification of household solid waste (HSW) is an indispensable component in the current procedure of waste disposal. In this paper, a novel ensemble learning model called EnCNN-UPMWS, which is based on convolutional neural networks (CNNs) and an unequal precision measurement weighting strategy (UPMWS), is proposed for the classification of HSW via waste images. First, three state-of-the-art CNNs, namely GoogLeNet, ResNet-50, and MobileNetV2, are used as ingredient classifiers to separately predict and obtain three predicted probability vectors, which are significant elements that affect the prediction performance by providing complementary information about the patterns to be classified. Then, the UPMWS is introduced to determine the weight coefficients of the ensemble models. The actual one-hot encoding labels of the validation set and the predicted probability vectors from the CNN ensemble are creatively used to calculate the weights for each classifier during the training phase, which can bring the aggregated prediction vector closer to the target label and improve the performance of the ensemble model. The proposed model was applied to two datasets, namely TrashNet (an open-access dataset) and FourTrash, which was constructed by collecting a total of 47,332 common HSW images containing four types of waste (wet waste, recyclables, harmful waste, and dry waste). The experimental results demonstrate the effectiveness of the proposed method in terms of its accuracy and F1-scores. Moreover, it was found that the UPMWS can simply and effectively enhance the performance of the ensemble learning model, and has potential applications in similar tasks of classification via ensemble learning.

Funder

Ministry of Science and Technology of the People´s Republic of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3