Abstract
This work presents a 12 bit 200 MS/s dual-residue pipelined successive approximation registers (SAR) analog-to-digital converter (ADC) with a single open-loop residue amplifier (RA). By using the inherent characteristics of the SAR conversion scheme, the proposed ADC sequentially generates two residue levels from the single RA, which eliminates the need for inter-stage gain-matching calibration. To convert the sequentially generated the two residues, a capacitive interpolating SAR ADC (I-SAR ADC) is also proposed. The I-SAR ADC is very compact because it consists of the one comparator, a CDAC, and control logic like a conventional SAR ADC. In addition, the I-SAR ADC needs no static power dissipation for the residue interpolation. A prototype ADC fabricated in a 40 nm CMOS technology occupies an active area of 0.026 mm2. At a 200 MS/s sampling-rate with the Nyquist input, the ADC achieves an SNDR (Signal-to-Noise distortion ratio) of 62.1 dB and 67.1 dB SFDR (Spurious-Free Dynamic Range), respectively. The total power consumed is 3.9 mW under a 0.9 V supply. Without any inter-stage mismatch calibration, the ADC achieve Walden Figure-of-Merit (FoM) of 19.0 fJ/conversion-step.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献