A Task Planning Method for UAV Swarm Dynamic Reconstruction Based on a Fourth-Order Motif

Author:

Duan Ting1ORCID,Wang Weiping1ORCID,Wang Tao1ORCID,Huang Meigen1ORCID,Zhou Xin1ORCID

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

The primary purpose of task allocation is to build each equipment platform and quickly complete integration planning at the actual combat speed to achieve efficient management of the entire task. In this process, higher requirements are put forward for dynamic, cooperative, and highly adaptive drone colony organization. In this paper, the scheduling problem of hybrid unmanned aerial vehicle (UAV) systems is studied under an uncertain environment. First, the system-capability-task organizational structure is defined and quantified, which lays a foundation for dynamic adjustment of the organizational structure in the future. Then, combined with the theory of flexible network and elastic network management, the model is calculated, and the linear transformation function and fuzzy theory are used to stratify and cluster the capability layers. On this basis, four motif structures are introduced for abnormal nodes in the process of dynamic adjustment, and a dynamic group reconstruction algorithm (DRA-M) is established. Finally, the time and communication load indexes are determined, and the alternative strategy is designed for the failure point. The performance of the classical scheduling algorithm is evaluated by benchmarking it under different conditions. The results show that the algorithm has a good dynamic adjustment ability in the event of a UAV swarm emergency, which is a bright light for the future study of highly adaptive UAV cluster organization.

Funder

面向大规模无人集群信息收集的马尔可夫型随机动态规划研究

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3