Real-Time Finger-Writing Character Recognition via ToF Sensors on Edge Deep Learning

Author:

Zhang Jiajin1,Peng Guoying1,Yang Hongyu2,Tan Chao3,Tan Yaqing1,Bai Hui4

Affiliation:

1. College of Big Data, Yunnan Agricultural University, Kunming 650201, China

2. College of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming 650201, China

3. Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin 644001, China

4. College of Architectural Engineering, Yunnan Agricultural University, Kunming 650201, China

Abstract

Human–computer interaction is demanded for natural and convenient approaches, in which finger-writing recognition has aroused more and more attention. In this paper, a device-free finger-writing character recognition system based on an array of time-of-flight (ToF) distance sensors is presented. The ToF sensors acquire distance values between sensors to a writing finger within a 9.5 × 15 cm square on a surface at specific time intervals and send distance data to a low-power microcontroller STM32F401, equipped with deep learning algorithms for real-time inference and recognition tasks. The proposed method enables one to distinguish 26 English lower-case letters by users writing with their fingers and does not require one to wear additional devices. All data used in this work were collected from 21 subjects (12 males and 9 females) to evaluate the proposed system in a real scenario. In this work, the performance of different deep learning algorithms, such as long short-term memory (LSTM), convolutional neural networks (CNNs) and bidirectional LSTM (BiLSTM), was evaluated. Thus, these algorithms provide high accuracy, where the best result is extracted from the LSTM, with 98.31% accuracy and 50 ms of maximum latency.

Funder

Key Lab of Process Analysis and Control of Sichuan Universities of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3