Ischemic Stroke Lesion Segmentation Using Mutation Model and Generative Adversarial Network

Author:

Ghnemat Rawan1ORCID,Khalil Ashwaq1,Abu Al-Haija Qasem1ORCID

Affiliation:

1. Department of Computer Science/Cybersecurity, Princess Sumaya University for Technology, Amman 11941, Jordan

Abstract

Ischemic stroke lesion segmentation using different types of images, such as Computed Tomography Perfusion (CTP), is important for medical and Artificial intelligence fields. These images are potential resources to enhance machine learning and deep learning models. However, collecting these types of images is a considerable challenge. Therefore, new augmentation techniques are required to handle the lack of collected images presenting Ischemic strokes. In this paper, the proposed model of mutation model using a distance map is integrated into the generative adversarial network (GAN) to generate a synthetic dataset. The Euclidean distance is used to compute the average distance of each pixel with its neighbor in the right and bottom directions. Then a threshold is used to select the adjacent locations with similar intensities for the mutation process. Furthermore, semi-supervised GAN is enhanced and transformed into supervised GAN, where the segmentation and discriminator are shared the same convolution neural network to reduce the computation process. The mutation and GAN models are trained as an end-to-end model. The results show that the mutation model enhances the dice coefficient of the proposed GAN model by 2.54%. Furthermore, it slightly enhances the recall of the proposed GAN model compared to other GAN models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3