Agent-Based Models Assisted by Supervised Learning: A Proposal for Model Specification

Author:

Platas-López AlejandroORCID,Guerra-Hernández AlejandroORCID,Quiroz-Castellanos MarcelaORCID,Cruz-Ramírez NicandroORCID

Abstract

Agent-based modeling (ABM) has become popular since it allows a direct representation of heterogeneous individual entities, their decisions, and their interactions, in a given space. With the increase in the amount of data in different domains, an opportunity to support the design, implementation, and analysis of these models, using Machine Learning techniques, has emerged. A vast and diverse literature evidences the interest and benefits of this symbiosis, but also exhibits the inadequacy of current specification standards, such as the Overview, Design concepts and Details (ODD) protocol, to cover such diversity and, in consequence, its lack of use. Given the relevance of standard specifications for the sake of reproducible ABMs, this paper proposes an extension to the ODD Protocol to provide a standardized description of the uses of Machine Learning (ML) in supporting agent-based modeling. The extension is based on categorization, a result of a broad, but integrated, review of the literature, considering the purpose of learning, the moment when the learning process is executed, the components of the model affected by learning, and the algorithms and data used in learning. The proposed extension of the ODD protocol allows orderly and transparent communication of ML workflows in ABM, facilitating its understanding and potential replication in other investigations. The presentation of a full-featured agent-based model of tax evasion illustrates the application of the proposed approach where the adoption of machine learning results in an error statistically significantly lower, with a p-value of 0.02 in the Wilcoxon signed-rank test. Furthermore, our analysis provides numerical estimates that reveal the strong impact of the penalty and tax rate on tax evasion. Future work considers other kinds of learning applications, e.g., the calibration of parameters and the analysis of the ABM results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3