Differential Privacy-Enabled Multi-Party Learning with Dynamic Privacy Budget Allocating Strategy

Author:

Pan Ke1ORCID,Feng Kaiyuan2ORCID

Affiliation:

1. School of Cyber Engineering, Xidian University, Xi’an 710071, China

2. School of Electronic Engineering, Xidian University, Xi’an 710071, China

Abstract

As one of the promising paradigms of decentralized machine learning, multi-party learning has attracted increasing attention, owing to its capability of preventing the privacy of participants from being directly exposed to adversaries. Multi-party learning enables participants to train their model locally without uploading private data to a server. However, recent studies have shown that adversaries may launch a series of attacks on learning models and extract private information about participants by analyzing the shared parameters. Moreover, existing privacy-preserving multi-party learning approaches consume higher total privacy budgets, which poses a considerable challenge to the compromise between privacy guarantees and model utility. To address this issue, this paper explores an adaptive differentially private multi-party learning framework, which incorporates zero-concentrated differential privacy technique into multi-party learning to get rid of privacy threats, and offers sharper quantitative results. We further design a dynamic privacy budget allocating strategy to alleviate the high accumulation of total privacy budgets and provide better privacy guarantees, without compromising the model’s utility. We inject more noise into model parameters in the early stages of model training and gradually reduce the volume of noise as the direction of gradient descent becomes more accurate. Theoretical analysis and extensive experiments on benchmark datasets validated that our approach could effectively improve the model’s performance with less privacy loss.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adap CDP-ML: Concentrated Differentially Private machine learning with Adaptive Noise;2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC);2023-12-08

2. FLIBD: A Federated Learning-Based IoT Big Data Management Approach for Privacy-Preserving over Apache Spark with FATE;Electronics;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3