FLIBD: A Federated Learning-Based IoT Big Data Management Approach for Privacy-Preserving over Apache Spark with FATE

Author:

Karras Aristeidis1ORCID,Giannaros Anastasios1ORCID,Theodorakopoulos Leonidas2ORCID,Krimpas George A.1,Kalogeratos Gerasimos2ORCID,Karras Christos1ORCID,Sioutas Spyros1ORCID

Affiliation:

1. Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece

2. Department of Management Science and Technology, University of Patras, 26334 Patras, Greece

Abstract

In this study, we introduce FLIBD, a novel strategy for managing Internet of Things (IoT) Big Data, intricately designed to ensure privacy preservation across extensive system networks. By utilising Federated Learning (FL), Apache Spark, and Federated AI Technology Enabler (FATE), we skilfully investigated the complicated area of IoT data management while simultaneously reinforcing privacy across broad network configurations. Our FLIBD architecture was thoughtfully designed to safeguard data and model privacy through a synergistic integration of distributed model training and secure model consolidation. Notably, we delved into an in-depth examination of adversarial activities within federated learning contexts. The Federated Adversarial Attack for Multi-Task Learning (FAAMT) was thoroughly assessed, unmasking its proficiency in showcasing and exploiting vulnerabilities across various federated learning approaches. Moreover, we offer an incisive evaluation of numerous federated learning defence mechanisms, including Romoa and RFA, in the scope of the FAAMT. Utilising well-defined evaluation metrics and analytical processes, our study demonstrated a resilient framework suitable for managing IoT Big Data across widespread deployments, while concurrently presenting a solid contribution to the progression and discussion surrounding defensive methodologies within the federated learning and IoT areas.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3