Time Synchronization and Space Registration of Roadside LiDAR and Camera

Author:

Wang Chuan,Liu Shijie,Wang Xiaoyan,Lan Xiaowei

Abstract

The sensing system consisting of Light Detection and Ranging (LiDAR) and a camera provides complementary information about the surrounding environment. To take full advantage of multi-source data provided by different sensors, an accurate fusion of multi-source sensor information is needed. Time synchronization and space registration are the key technologies that affect the fusion accuracy of multi-source sensors. Due to the difference in data acquisition frequency and deviation in startup time between LiDAR and the camera, asynchronous data acquisition between LiDAR and camera is easy to occur, which has a significant influence on subsequent data fusion. Therefore, a time synchronization method of multi-source sensors based on frequency self-matching is developed in this paper. Without changing the sensor frequency, the sensor data are processed to obtain the same number of data frames and set the same ID number, so that the LiDAR and camera data correspond one by one. Finally, data frames are merged into new data packets to realize time synchronization between LiDAR and camera. Based on time synchronization, to achieve spatial synchronization, a nonlinear optimization algorithm of joint calibration parameters is used, which can effectively reduce the reprojection error in the process of sensor spatial registration. The accuracy of the proposed time synchronization method is 99.86% and the space registration accuracy is 99.79%, which is better than the calibration method of the Matlab calibration toolbox.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Jiangsu Province

Program of Science and Technology of Suzhou

Key Research and Development Program of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3