A Truthful and Reliable Incentive Mechanism for Federated Learning Based on Reputation Mechanism and Reverse Auction

Author:

Xiong Ao,Chen YuORCID,Chen Hao,Chen Jiewei,Yang Shaojie,Huang Jianping,Li Zhongxu,Guo Shaoyong

Abstract

As a distributed machine learning paradigm, federated learning (FL) enables participating clients to share only model gradients instead of local data and achieves the secure sharing of private data. However, the lack of clients’ willingness to participate in FL and the malicious influence of unreliable clients both seriously degrade the performance of FL. The current research on the incentive mechanism of FL lacks the accurate assessment of clients’ truthfulness and reliability, and the incentive mechanism based on untruthful and unreliable clients is unreliable and inefficient. To solve this problem, we propose an incentive mechanism based on the reputation mechanism and reverse auction to achieve a more truthful, more reliable, and more efficient FL. First, we introduce the reputation mechanism to measure clients’ truthfulness and reliability through multiple reputation evaluations and design a reliable client selection scheme. Then the reverse auction is introduced to select the optimal clients that maximize the social surplus while satisfying individual rationality, incentive compatibility, and weak budget balance. Extensive experimental results demonstrate that this incentive mechanism can motivate more clients with high-quality data and high reputations to participate in FL with less cost, which increases the FL tasks’ economic benefit by 31% and improves the accuracy from 0.9356 to 0.9813, and then promote the efficient and stable development of the FL service trading market.

Funder

State Grid Corporation of China Science and Technology Project “Research and application of industry chain finance key technology based on blockchain”

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

1. Incentive mechanism design for federated learning: Challenges and opportunities;Zhan;IEEE Netw.,2021

2. (2017, April 06). Federated Learning: Collaborative Machine Learning without Centralized Training Data. Available online: https://ai.googleblog./com/2017/04/federated-learning-collaborative.html.

3. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage, D. (2018). Federated learning for mobile keyboard prediction. arXiv.

4. McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B.A. (2017, January 20–22). Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA.

5. A survey of incentive mechanism design for federated learning;Zhan;IEEE Trans. Emerg. Top. Comput.,2021

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3