Graph Neural Network Based Asynchronous Federated Learning for Digital Twin-Driven Distributed Multi-Agent Dynamical Systems

Author:

Sheng Xuanzhu1,Zhou Yang2,Cui Xiaolong1

Affiliation:

1. Chinese People’s Armed Police Force Engineering University, Xi’an 710086, China

2. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China

Abstract

The rapid development of artificial intelligence (AI) and 5G paradigm brings infinite possibilities for data annotation for new applications in the industrial Internet of Things (IIoT). However, the problem of data annotation consistency under distributed architectures and growing concerns about issues such as data privacy and cybersecurity are major obstacles to improving the quality of distributed data annotation. In this paper, we propose a reputation-based asynchronous federated learning approach for digital twins. First, this paper integrates digital twins into an asynchronous federated learning framework, and utilizes a smart contract-based reputation mechanism to enhance the interconnection and internal interaction of asynchronous mobile terminals. In addition, in order to enhance security and privacy protection in the distributed smart annotation system, this paper introduces blockchain technology to optimize the data exchange, storage, and sharing process to improve system security and reliability. The data results show that the consistency of our proposed FedDTrep distributed intelligent labeling system reaches 99%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3