A Novel Fusion Approach Consisting of GAN and State-of-Charge Estimator for Synthetic Battery Operation Data Generation

Author:

Wong Kei Long1ORCID,Chou Ka Seng12ORCID,Tse Rita1,Tang Su-Kit1ORCID,Pau Giovanni234ORCID

Affiliation:

1. Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China

2. Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy

3. Autonomous Robotics Research Center, Technology Innovation Institute (TII), Abu Dhabi P.O. Box 9639, United Arab Emirates

4. Samueli Computer Science Department, University of California, Los Angeles, CA 90095, USA

Abstract

The recent success of machine learning has accelerated the development of data-driven lithium-ion battery state estimation and prediction. The lack of accessible battery operation data is one of the primary concerns with the data-driven approach. However, research on battery operation data augmentation is rare. When coping with data sparsity, one popular approach is to augment the dataset by producing synthetic data. In this paper, we propose a novel fusion method for synthetic battery operation data generation. It combines a generative, adversarial, network-based generation module and a state-of-charge estimator. The generation module generates battery operation features, namely the voltage, current, and temperature. The features are then fed into the state-of-charge estimator, which calculates the relevant state of charge. The results of the evaluation reveal that our method can produce synthetic data with distributions similar to the actual dataset and performs well in downstream tasks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3