Lithium Battery SOC Estimation Based on Multi-Head Attention Mechanism and GRU Algorithm

Author:

Li Xueguang,Dumlao Menchita F.

Abstract

 Pure electric vehicles have been widely used due to their non-pollution, low noise, high energy conversion efficiency and other advantages. SOC (State of Charge) is a crucial indicator for lithium batteries and pure electric vehicles. SOC cannot be directly measured. This article designs a new network structure. It is the GRU-Attention network structure. The stacked GRU algorithm in GRU-Attention network extracts the temporal characteristics of lithium battery test data, and the stacked multi-head self-attention network extracts the global information. The GRU-Attention network can avoid long-term dependency and gradient disappearance problems. The proposed network utilizes Stacked FFN as the dense layer. This article will test the network designed in the public data set at the University of Maryland. Simultaneously, this article compares the effects of different BatchSize on the performance of the algorithm. The network training process converges more effectively with a smaller BatchSize. Both too large and too small BatchSize have a negative impact on the generalization performance of the network. The extraction of the time-order character, however, may be hampered if the timestamp is too small. At the same time, the paper also compares the GRU-Attention network horizontally with the GRU and Attention networks. Eventually, the GRU-Attention network proposed in this article could better meet the estimate of the lithium battery SOC.

Publisher

Darcy & Roy Press Co. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3