An Improved Nonlinear Tuna Swarm Optimization Algorithm Based on Circle Chaos Map and Levy Flight Operator

Author:

Wang Wentao,Tian Jun

Abstract

The tuna swarm optimization algorithm (TSO) is a new heuristic algorithm proposed by observing the foraging behavior of tuna populations. The advantages of TSO are a simple structure and fewer parameters. Although TSO converges faster than some classical meta-heuristics algorithms, it can still be further accelerated. When TSO solves complex and challenging problems, it often easily falls into local optima. To overcome the above issue, this article proposed an improved nonlinear tuna swarm optimization algorithm based on Circle chaos map and levy flight operator (CLTSO). In order to compare it with some advanced heuristic algorithms, the performance of CLTSO is tested with unimodal functions, multimodal functions, and some CEC2014 benchmark functions. The test results of these benchmark functions are statistically analyzed using Wilcoxon, Friedman test, and MAE analysis. The experimental results and statistical analysis results indicate that CLTSO is more competitive than other advanced algorithms. Finally, this paper uses CLTSO to optimize a BP neural network in the field of artificial intelligence. A CLTSO-BP neural network model is proposed. Three popular datasets from the UCI Machine Learning and Intelligent System Center are selected to test the classification performance of the new model. The comparison result indicates that the new model has higher classification accuracy than the original BP model.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference56 articles.

1. A branch and bound algorithm for feature subsets election;IEEE Trans Comput.,1977

2. A variable reduction strategy for evolutionary algorithms handling equality constraints;Appl. Soft Comput. J.,2015

3. Data-driven robust approximate optimal tracking control for unknown general non-linear systems using adaptive dynamic programming method;IEEE Trans. Neural Netw.,2011

4. Nature inspired methods and their industry applications—Swarm intelligence algorithms;IEEE Trans. Ind. Inform.,2017

5. Swarm intelligence: A review of algorithms;Nat.-Inspir. Comput. Optim.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3