RSCNet: An Efficient Remote Sensing Scene Classification Model Based on Lightweight Convolution Neural Networks

Author:

Chen Zhichao,Yang Jie,Feng Zhicheng,Chen Lifang

Abstract

This study aims at improving the efficiency of remote sensing scene classification (RSSC) through lightweight neural networks and to provide a possibility for large-scale, intelligent and real-time computation in performing RSSC for common devices. In this study, a lightweight RSSC model is proposed, which is named RSCNet. First, we use the lightweight ShuffleNet v2 network to extract the abstract features from the images, which can guarantee the efficiency of the model. Then, the weights of the backbone are initialized using transfer learning, allowing the model to learn by drawing on the knowledge of ImageNet. Second, to further improve the classification accuracy of the model, we propose to combine ShuffleNet v2 with an efficient channel attention mechanism that allows the features of the input classifier to be weighted. Third, we use a regularization technique during the training process, which utilizes label smoothing regularization to replace the original loss function. The experimental results show that the classification accuracy of RSCNet is 96.75% and 99.05% on the AID and UCMerced_LandUse datasets, respectively. The floating-point operations (FLOPs) of the proposed model are only 153.71 M, and the time spent for a single inference on the CPU is about 2.75 ms. Compared with existing RSSC methods, RSCNet achieves relatively high accuracy at a very small computational cost.

Funder

Research Projects of Ganjiang Innovation Academy, Chinese Academy of Sciences

National Natural Science Foundation of China

Jiangxi Postgraduate Innovation Special Fund Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3