Artificial Intelligence Algorithms for Detecting and Classifying MQTT Protocol Internet of Things Attacks

Author:

Alzahrani AliORCID,Aldhyani Theyazn H. H.ORCID

Abstract

The Internet of Things (IoT) grew in popularity in recent years, becoming a crucial component of industrial, residential, and telecommunication applications, among others. This innovative idea promotes communication between physical components, such as sensors and actuators, to improve process flexibility and efficiency. Smart gadgets in IoT contexts interact using various message protocols. Message queuing telemetry transfer (MQTT) is a protocol that is used extensively in the IoT context to deliver sensor or event data. The aim of the proposed system is to create an intrusion detection system based on an artificial intelligence algorithm, which is becoming essential in the defense of the IoT networks against cybersecurity threats. This study proposes using a k-nearest neighbors (KNN) algorithm, linear discriminant analysis (LDA), a convolutional neural network (CNN), and a convolutional long short-term memory neural network (CNN-LSTM) to identify MQTT protocol IoT intrusions. A cybersecurity system based on artificial intelligence algorithms was examined and evaluated using a standard dataset retrieved from the Kaggle repository. The dataset was injected by five attacks, namely brute-force, flooding, malformed packet, SlowITe, and normal packets. The deep learning algorithm achieved high performance compared with the developing security system using machine learning algorithms. The performance accuracy of the KNN method was 80.82%, while the accuracy of the LDA algorithm was 76.60%. The CNN-LSTM model attained a high level of precision (98.94%) and is thus very effective at detecting intrusions in IoT settings.

Funder

Deanship of Scientific Research at King Faisal University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3