Secure Enhancement for MQTT Protocol Using Distributed Machine Learning Framework

Author:

Alotaibi Nouf Saeed1ORCID,Sayed Ahmed Hassan I.2,Kamel Samah Osama M.2,ElKabbany Ghada Farouk2

Affiliation:

1. Department of Computer Science, College of Science and Humanities Al Dawadmi, Shaqra University, Dawadmi City 11911, Saudi Arabia

2. Informatics Department, Electronics Research Institute, Cairo 12622, Egypt

Abstract

The Message Queuing Telemetry Transport (MQTT) protocol stands out as one of the foremost and widely recognized messaging protocols in the field. It is often used to transfer and manage data between devices and is extensively employed for applications ranging from smart homes and industrial automation to healthcare and transportation systems. However, it lacks built-in security features, thereby making it vulnerable to many types of attacks such as man-in-the-middle (MitM), buffer overflow, pre-shared key, brute force authentication, malformed data, distributed denial-of-service (DDoS) attacks, and MQTT publish flood attacks. Traditional methods for detecting MQTT attacks, such as deep neural networks (DNNs), k-nearest neighbor (KNN), linear discriminant analysis (LDA), and fuzzy logic, may exist. The increasing prevalence of device connectivity, sensor usage, and environmental scalability become the most challenging aspects that novel detection approaches need to address. This paper presents a new solution that leverages an H2O-based distributed machine learning (ML) framework to improve the security of the MQTT protocol in networks, particularly in IoT environments. The proposed approach leverages the strengths of the H2O algorithm and architecture to enable real-time monitoring and distributed detection and classification of anomalous behavior (deviations from expected activity patterns). By harnessing H2O’s algorithms, the identification and timely mitigation of potential security threats are achieved. Various H2O algorithms, including random forests, generalized linear models (GLMs), gradient boosting machine (GBM), XGBoost, and the deep learning (DL) algorithm, have been assessed to determine the most reliable algorithm in terms of detection performance. This study encompasses the development of the proposed algorithm, including implementation details and evaluation results. To assess the proposed model, various evaluation metrics such as mean squared error (MSE), root-mean-square error (RMSE), mean per class error (MCE), and log loss are employed. The results obtained indicate that the H2OXGBoost algorithm outperforms other H2O models in terms of accuracy. This research contributes to the advancement of secure IoT networks and offers a practical approach to enhancing the security of MQTT communication channels through distributed detection and classification techniques.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure and efficient device‐to‐device communication in IoT: The DMBSOA‐enhanced MQTT protocol;Transactions on Emerging Telecommunications Technologies;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3