Research on Retinex Algorithm Combining with Attention Mechanism for Image Enhancement

Author:

Liu MingzhuORCID,Chen Junyu,Han Xiaofei

Abstract

Considering the high noise and chromatic aberration in the Retinex-Net image enhancement results, this paper put forward a modified Retinex-Net algorithm for weak illumination image enhancement based on the Decom-Net and Enhance-Net structures of Retinex-Net. The improved structure proposed in this paper adds the attention mechanism ECA-Net into the Decom-Net and Enhance-Net convolution layer of the original Retinex-Net structure, which can effectively reduce the problem of irrelevant background and local brightness imbalance, activate sensitive features, and improve the image’s details and brightness processing ability. Additionally, deep connected attention networks are embedded between the introduced attention modules, so that all of the attention modules can be trained jointly to improve the learning ability. Furthermore, the improved method also introduces a noise reduction loss function and a color loss function to suppress noise and to reduce image color distortion. The test results of the proposed method indicate that the image’s overall brightness can be balanced, the local areas cannot be overexposed, and more image details and color information can be retained than with other enhancement algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. Face hall-ucination from low quality images using definition-scalable inference;Pattern Recognit.,2019

2. Feature detection method for low illumination image;Sens. Microsyst.,2021

3. Companding multiscale Research on Retinex image enhancement algorithm;J. Harbin Univ. Sci. Technol.,2020

4. Dynamic Multi-Histogram Equalization Based on Fast Fuzzy Clustering;Acta Electron. Sin.,2022

5. Color Image Enhancement Simulation Based on Weighted Histogram Equalization;Comput. Simul.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3