A Refined Taylor-Fourier Transform with Applications to Wideband Oscillation Monitoring

Author:

Xu Qunwei,Ma Zhiquan,Li Pei,Jiang Xiaolong,Wang Chaoqun

Abstract

The recent increase in renewable energy adoption has enhanced the penetration rate of electronic equipment, leading to an increased risk of wideband oscillations. Existing wide-area measurement systems mainly focus on fundamental phasors, which cannot effectively monitor wideband oscillations. This study presents an accurate wideband oscillation monitoring method based on radial basis function (RBF) neural networks and Taylor–Fourier transform (TFT). First, discrete Fourier transform is used to obtain a preliminary estimation of the oscillation signal, and then, TFT is adopted to obtain a precise estimation even under dynamic conditions. To reduce the computational burden of TFT, an RBF neural network is used for noise intensity estimation, which adaptively determines the window length. Finally, the proposed method is verified by synthetic data and the field data collected from Guyuan and Hami, China. The experimental results show that the RBF neural network has an excellent denoising effect. When the signal-to-noise ratio is 45 dB, the maximum overall phasor error and the maximum frequency error are 1% and 0.01 Hz, respectively. Hence, it is expected to be useful for next-generation monitoring systems.

Funder

Science and Technology Project of State Grid

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3