A Comparative Study on System Profit Maximization of a Renewable Combined Deregulated Power System

Author:

Basu Jayanta BhusanORCID,Dawn SubhojitORCID,Saha Pradip Kumar,Chakraborty Mitul Ranjan,Ustun Taha SelimORCID

Abstract

Electrical energy plays a key role in the development of the social as well as the economic front. The power sector has historically been owned and operated by state agencies due to its tremendous importance. It has been restructured over time, and the power market is being deregulated. In terms of consumer prices, efficiency, and environmental implications, both regulated and deregulated electricity markets offer advantages and disadvantages. Policy-based techniques are typically used in regulated markets to address the costs of fossil-fuel resources and boost the viability of renewable energy sources. Renewables can be integrated into deregulated markets through a combination of regulatory and market-based measures to extend the system’s economic stability which has been deployed in this paper. As the need for energy has expanded dramatically over the last few decades, particularly in developing countries, the amount of greenhouse gas emissions has climbed rapidly, as have fuel prices, which are the key driving forces behind initiatives to use renewable energy sources more effectively. Despite the apparent benefits of renewable energy, it has significant downsides, such as generation of optimization methods applied to renewable consistency, because most renewable energy supplies are climate-dependent, necessitating complicated design, planning, and control optimization methods. There have been numerous optimization strategies applied to the renewable integrated deregulated electricity system. With the increased use of renewable energy, energy storage technology has grown in importance, as these devices can capture electricity generated by renewables during off-peak demand hours and put it back into the grid during peak demand periods. Using stored renewable energy instead of adding generation based on fossil fuel can help to minimize greenhouse gas emissions. There is an interest in better utilizing available power system capacity by implementing FACTS to maximize the social benefit in a deregulated system. As a result, effective FACTS device placement provides novel control capabilities in both steady-state power flow regulation and dynamic stability control. This study reviews several aspects of renewable integrated deregulated power systems and provides a clear picture of the most recent research developments on this subject. The main objectives of the reviews are the maximization of system profit, maximization of social welfare, and minimization of system generation cost and loss by optimal placement of energy storage devices and FACTS controllers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3