IEC-61850-Based Communication for Integrated EV Management in Power Systems with Renewable Penetration

Author:

Ustun Taha SelimORCID,Hussain S. M. SuhailORCID,Syed Mazheruddin H.,Dambrauskas Paulius

Abstract

As the number of EVs increases, their impact on electrical systems will be substantial. Novel management schemes are needed to manage the electrical load they require when charging. Literature is rich with different techniques to manage and control this effect on the grid by controlling and optimizing power flow. Although these solutions heavily rely on communication lines, they mostly treat communication as a black box. It is important to develop communication solutions that can integrate EVs, charging stations (CSs), and the rest of the grid in an interoperable way. A standard approach would be indispensable as there are different EV models manufactured by different companies. The IEC 61850 standard is a strong tool used for developing communication models for different smart grid components. However, it does not have the necessary models for implementing smart EV management schemes that coordinate between EVs and CSs. In this paper, these missing links are addressed through the development of corresponding models and message mapping. A hardware-in-the-loop test is performed to validate the communication models and cross-platform operation. Then, a co-simulation environment is used to perform a combined study of communication and the power system components. The developed communication model helps integrate the EVs to a centralized, coordinated voltage control scheme. These models can be used to run extensive impact studies where different domains of smart grids need to be considered simultaneously. The main contribution of this paper is the development of smartgrid communication solutions for enabling successful information exchanges.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3