Speed Estimation Strategy for Closed-Loop Control of PMSM Based on PSO Optimized KF Series Algorithms

Author:

Xie Tunzhen1ORCID,Xu Xianglian1,Yuan Fang2ORCID,Song Yuanqing1,Lei Wenyang2,Zhao Ruiqing1,Chang Yating1,Wu Xinrui1,Gan Ziqi1,Zhang Fangqing2ORCID

Affiliation:

1. School of Automation, Wuhan University of Technology, Wuhan 430070, China

2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

Abstract

In this paper, solving the problem of the noise covariance matrix parameters tuning of the extended Kalman filter (EKF) and unscented Kalman filter algorithms (UKF) is difficult. A speed estimation strategy for a permanent magnet synchronous motor (PMSM) based on particle swarm optimization (PSO) optimized Kalman filter (KF) series algorithms is proposed. By using MATLAB/Simulink, in this paper, 20 effective simulation experiments on the noise covariance matrix parameter optimization process are conducted to obtain the optimal covariance matrix parameters of the extended Kalman filter and unscented Kalman filter. Moreover, EKF, PSO-EKF, UKF, and PSO-UKF are also compared to verify the effectiveness of the particle swarm optimization algorithm in optimizing the systems using the extended Kalman filter and unscented Kalman filter. For the error of speed estimation, taking 4000 rpm as a reference, the system using PSO-EKF has improved by 2.125% compared to that using EKF, and the system applying PSO-UKF has improved by 0.55% compared to the system applying UKF. For the error of electrical angle estimation, taking the system errors of original algorithms as references, the system adopting PSO-EKF has decreased by 60% compared to that adopting EKF, and the system using PSO-UKF has decreased by 47% compared to the system using UKF.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3