Affiliation:
1. School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
2. School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract
The field of sensorless control of permanent magnet synchronous motor (PMSM) systems has been the subject of extensive research. The accuracy of sensorless controllers depends on the precise estimation of PMSM state quantities, including rotational speed and rotor position. In order to enhance state estimation accuracy, this paper proposes a moving horizon estimator that can be utilized in the sensorless control system of PMSM. Considering the parameter variations observed in PMSM, a nonlinear mathematical model of PMSM is established. A model reference adaptive system (MRAS) is employed to identify parameters such as resistance, inductance, and magnetic chain in real time. This approach can mitigate the impact of parameter fluctuations. Moving horizon estimation (MHE) is an estimation method based on optimization that can directly handle nonlinear system models. In order to eliminate the influence of external interference and improve the robustness of state estimation, a method based on MHE has been designed for PMSM, and a sensorless observer has been established. Considering the traditional MHE with large computation and high memory occupation, the calculation of MHE is optimized by utilizing a Hessian matrix and gradient vector. The speed and position of the PMSM are estimated within constraints during a single-step iteration. The results of the simulation demonstrate that in comparison to the traditional control structure, the estimation error of rotational speed and rotor position can be reduced by utilizing the proposed method. A more accurate estimation can be achieved with good adaptability and computational speed, which can enhance the robustness of the control system of PMSM.