A z-Axis-Tolerant Inductive Power Transfer System Using a Bipolar Double D Receiver Coil Structure

Author:

Domajnko Jure1ORCID,Prosen Nataša1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia

Abstract

This paper presents a solution to a limitation of wireless power transfer that arises when using two D-shaped transmitter and receiver coils. Double D, or DD, coils are well known to have a polar, directional magnetic field, which increases the misalignment tolerance in one of the directions. The misalignment tolerance is nonsymmetric, and it is significantly better in one of the directions, which can also be considered a shortcoming. An additional shortcoming of the DD coil is that it is dependent on the rotation around the z-axis, due to the directional magnetic field. This is not a problem when using classic planar spiral coils, which do not generate a directional magnetic field. Therefore, DD coils are not suitable for applications in which the z-axis orientation is not determined and fixed to specific angle and direction. This paper presents a unique design of a transmitter coil, based on a double DD coil. The transmitter coil consists of two DD coils which are perpendicular to each other. The proposed transmitter structure can excite the receiver DD coil in a way that the efficiency of the power transfer is the highest, regardless of the orientation. The proposed transmitter structure can, therefore, solve the problem with rotation of a single DD coil. The proposed system structure was tested on the small-scale experimental setup.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3