Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems

Author:

Fisher Taylor M.,Farley Kathleen Blair,Gao Yabiao,Bai Hua,Tse Zion Tsz Ho

Abstract

Electric vehicles (EVs) are becoming more popular due to concerns about the environment and rising gasoline prices. However, the charging infrastructure is lacking, and most people can only charge their EVs at home if they remember to plug in their cars. Using the principles of magnetic inductance and magnetic resonance, wireless charging (WC) could help significantly with these infrastructure problems by making charging secure and convenient. WC systems also have the potential to provide dynamic charging, making long road trips with EVs feasible and eliminating range anxiety. In this paper, we review the companies available in the literature that have developed electric vehicle wireless charging systems, automobile manufacturers interested in such technology, and research from universities and laboratories on the topic. While the field is still very young, there are many promising technologies available today. Some systems have already been in use for years, recharging public transit buses at bus stops. Safety and regulations are also discussed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Energy Engineering and Power Technology

Reference58 articles.

1. Beh T.C. ; Imura T. ; Kato M. ; Hori Y. : Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching, in IEEE Int. Symp. on Industrial Electronics, 2010, 2011–2016.

2. Scudiere M.B. ; Miller J.M. : Wireless Charging System for Electric Vehicles, 2011. Available: http://www.ornl.gov/adm/partnerships/factsheets/11-G00236_ID2250_2637_2638_2639_2667.pdf, July 2013.

3. Motavalli J. WiTricity Developing Wireless Electric Car Charger.: Delphi and WiTricity Developing Wireless Electric Car Charger. The New York Times, 2010. Available: http://wheels.blogs.nytimes.com/2010/11/02/delphi-and-witricity-developing-wireless-electric-car-charger/

4. Manheim Germany Primove E-Bus – 100% e-mobility on demanding city route. I. Bombardier , ed., 2013.

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3