Random Convolutional Kernels for Space-Detector Based Gravitational Wave Signals

Author:

Poghosyan Ruben1ORCID,Luo Yuan1

Affiliation:

1. Computer Science and Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Neural network models have entered the realm of gravitational wave detection, proving their effectiveness in identifying synthetic gravitational waves. However, these models rely on learned parameters, which necessitates time-consuming computations and expensive hardware resources. To address this challenge, we propose a gravitational wave detection model tailored specifically for binary black hole mergers, inspired by the Random Convolutional Kernel Transform (ROCKET) family of models. We conduct a rigorous analysis by factoring in realistic signal-to-noise ratios in our datasets, demonstrating that conventional techniques lose predictive accuracy when applied to ground-based detector signals. In contrast, for space-based detectors with high signal-to-noise ratios, our method not only detects signals effectively but also enhances inference speed due to its streamlined complexity—a notable achievement. Compared to previous gravitational wave models, we observe a significant acceleration in training time while maintaining acceptable performance metrics for ground-based detector signals and achieving equal or even superior metrics for space-based detector signals. Our experiments on synthetic data yield impressive results, with the model achieving an AUC score of 96.1% and a perfect recall rate of 100% on a dataset with a 1:3 class imbalance for ground-based detectors. For high signal-to-noise ratio signals, we achieve flawless precision and recall of 100% without losing precision on datasets with low-class ratios. Additionally, our approach reduces inference time by a factor of 1.88.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3