Affiliation:
1. Computer Science and Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract
Neural network models have entered the realm of gravitational wave detection, proving their effectiveness in identifying synthetic gravitational waves. However, these models rely on learned parameters, which necessitates time-consuming computations and expensive hardware resources. To address this challenge, we propose a gravitational wave detection model tailored specifically for binary black hole mergers, inspired by the Random Convolutional Kernel Transform (ROCKET) family of models. We conduct a rigorous analysis by factoring in realistic signal-to-noise ratios in our datasets, demonstrating that conventional techniques lose predictive accuracy when applied to ground-based detector signals. In contrast, for space-based detectors with high signal-to-noise ratios, our method not only detects signals effectively but also enhances inference speed due to its streamlined complexity—a notable achievement. Compared to previous gravitational wave models, we observe a significant acceleration in training time while maintaining acceptable performance metrics for ground-based detector signals and achieving equal or even superior metrics for space-based detector signals. Our experiments on synthetic data yield impressive results, with the model achieving an AUC score of 96.1% and a perfect recall rate of 100% on a dataset with a 1:3 class imbalance for ground-based detectors. For high signal-to-noise ratio signals, we achieve flawless precision and recall of 100% without losing precision on datasets with low-class ratios. Additionally, our approach reduces inference time by a factor of 1.88.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering