VMD–RP–CSRN Based Fault Diagnosis Method for Rolling Bearings

Author:

Jiang Yuanyuan,Xie JinyangORCID

Abstract

In response to the problems of low accuracy and poor noise immunity of the traditional fault diagnosis method for rolling bearing fault diagnosis due to the complex and variable operating conditions of rolling bearings and the large noise interference during bearing signal acquisition, a rolling bearing fault diagnosis model based on VMD–RP–CSRN is proposed. Firstly, the initial feature extraction of the bearing signal is carried out by variational modal decomposition (VMD), which is then converted into a two-dimensional image with fault features by recurrent plot (RP) coding, and then the feature images are input to a channel split residual network (CSRN) for feature extraction and fault classification. In order to verify the accuracy and noise immunity of the proposed method for the diagnosis of bearing faults under complex working conditions, experiments on the selection of parameters in the CSRN model were conducted on the bearing dataset of Jiangnan University, and experiments on the diagnosis of bearing faults under complex working conditions and noise immunity of CSRN were carried out and compared with other commonly used methods. The proposed bearing fault diagnosis method based on VMD–RP–CSRN combines VMD and RP to retain the fault features in the original signal to the maximum extent and stress the hidden features in the signal. The proposed channel split operation realizes the extraction of hidden features by selecting the main operating channel of the three-channel feature image, and makes more fault features participate in the feature extraction of the diagnosis model. The experimental results demonstrate that the proposed method is at least 1.2% better than the comparison method, and has better noise immunity. In addition, experiments on the fault diagnosis capability of the model with different data set sizes and the diagnosis of variable speed bearing data by the model show that the proposed method has better generalization performance and diagnosis capability.

Funder

Key Research and Development Program of Anhui Province

Research and Development Special Fund for Environmentally Friendly Materials and Occupational Health Research Institute of Anhui University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference28 articles.

1. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder—Based health state identification;Lu;Signal Process.,2017

2. Big data health monitoring method of mechanical equipment based on deep learning theory;Lei;J. Mech. Eng.,2015

3. Bearing fault diagnosis based on EMD and improved Chebyshev distance in SDP image;Sun;Measurement,2021

4. Bearing Fault Diagnosis Method Based on EEMD and LSTM;Zou;Int. J. Comput. Commun. Control,2020

5. Correlated SVD and Its Application in Bearing Fault Diagnosis;Li;IEEE Trans. Neural Netw. Learn. Syst.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3