Large-Scale Distributed System and Design Methodology for Real-Time Cluster Services and Environments

Author:

Lee SungjuORCID,Jeong Taikyeong

Abstract

The demand for a large-scale distributed system, such as a smart grid, which includes real-time interconnection, is rapidly increasing. To provide a seamless connected environment, real-time communication and optimal resource allocation of cluster microgrid platforms (CMPs) are essential. In this paper, we propose two techniques for real-time interconnection and optimal resource allocation for a large-scale distributed system. In particular, to configure a CMP, we analyze the data transfer rate and utilization rate from the intelligent electronic device (IED), collecting the power production data to the individual controller. The details provided in this paper are used to design a sample value, i.e., raw data transfer, on the basis of the IEC 61850 protocol for mapping. The choice of sampled values is to attain the critical time requirement, data transmission of current transformers, voltage transformers, and protective relaying of less than 1 s without complicating the real-time implementation. Furthermore, in this paper, a way to determine the optimal number of physical resources (i.e., CPU, memory, and network) for a given system is discussed. CPU ranged from 0.9 to 0.98 while each cluster increased from 10 to 1000. With the same condition, memory utilized almost 100% utilization from 0.98 to 1. Lastly, the network utilization rate was 0.96 and peaked at 1 at most. Based on the results, we confirm that a large-scale distributed system can provide a seamless monitoring service to distribute messages for each IED, and this can provide a configuration for CMP without exceeding 100% utilization.

Funder

Hallym University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3