Affiliation:
1. Department of Software, Sangmyung University, Chunan 330720, Republic of Korea
2. School of Artificial Intelligence Convergence, Hallym University, Chuncheon 24252, Republic of Korea
Abstract
Time series data analysis and forecasting have recently received considerable attention, supporting new technology development trends for predicting load fluctuations or uncertainty conditions in many domains. In particular, when the load is small, such as a building, the effect of load fluctuation on the total load is relatively large compared to the power system, except for specific factors, and the amount is very difficult to quantify. Recently, accurate power consumption prediction has become an important issue in the Internet of Things (IoT) environment. In this paper, a traditional time series prediction method was applied and a new model and scientific approach were used for power prediction in IoT and big data environments. To this end, to obtain data used in real life, the power consumption of commercial refrigerators was continuously collected at 15 min intervals, and prediction results were obtained by applying time series prediction methods (e.g., RNN, LSTM, and GRU). At this time, the seasonality and periodicity of electricity use were also analyzed. In this paper, we propose a method to improve the performance of the model by classifying power consumption into three classes: weekday, Saturday, and Sunday. Finally, we propose a method for predicting power consumption using a new type of ensemble model combined with three time series methods. Experimental results confirmed the accuracy of RNN (i.e., 96.1%), LSTM (i.e., 96.9%), and GRU (i.e., 96.4%). In addition, it was confirmed that the ensemble model combining the three time series models showed 98.43% accuracy in predicting power consumption. Through these experiments and approaches, scientific achievements for time series data analysis through real data were accomplished, which provided an opportunity to once again identify the need for continuous real-time power consumption monitoring.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献