Efficient FPGA Implementation of an ANN-Based Demapper Using Cross-Layer Analysis

Author:

Ney Jonas,Hammoud Bilal,Dörner Sebastian,Herrmann MatthiasORCID,Clausius Jannis,ten Brink Stephan,Wehn Norbert

Abstract

In the field of communication, autoencoder (AE) refers to a system that replaces parts of the traditional transmitter and receiver with artificial neural networks (ANNs). To meet the system performance requirements, it is necessary for the AE to adapt to the changing wireless-channel conditions at runtime. Thus, online fine-tuning in the form of ANN-retraining is of great importance. Many algorithms on the ANN layer are developed to improve the AE’s performance at the communication layer. Yet, the link of the system performance and the ANN topology to the hardware layer is not fully explored. In this paper, we analyze the relations between the design layers and present a hardware implementation of an AE-based demapper that enables fine-tuning to adapt to varying channel conditions. As a platform, we selected field-programmable gate arrays (FPGAs) which provide high flexibility and allow to satisfy the low-power and low-latency requirements of embedded communication systems. Furthermore, our cross-layer approach leverages the flexibility of FPGAs to dynamically adapt the degree of parallelism (DOP) to satisfy the system-level requirements and to ensure environmental adaptation. Our solution achieves 2000× higher throughput than a high-performance graphics processor unit (GPU), draws 5× less power than an embedded central processing unit (CPU) and is 5800× more energy efficient compared to an embedded GPU for small batch size. To the best of our knowledge, such a cross-layer design approach combined with FPGA implementation is unprecedented.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised ANN-Based Equalizer and Its Trainable FPGA Implementation;2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit);2023-06-06

2. From Algorithm to Implementation: Enabling High-Throughput CNN-Based Equalization on FPGA for Optical Communications;Lecture Notes in Computer Science;2023

3. Improving Hardware in LUT-Based Mealy FSMs;Applied Sciences;2022-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3