Improving Hardware in LUT-Based Mealy FSMs

Author:

Barkalov AlexanderORCID,Titarenko LarysaORCID,Krzywicki KazimierzORCID

Abstract

The main contribution of this paper is a novel design method reducing the number of look-up table (LUT) elements in the circuits of three-block Mealy finite-state machines (FSMs). The proposed method is based on using codes of collections of outputs (COs) for representing both FSM state variables and outputs. The interstate transitions are represented by output collections generated during two adjacent cycles of FSM operation. To avoid doubling the number of variables encoding of COs, two registers are used. The first register keeps a code of CO produced in the current cycle of operation; the code of a CO produced in the previous cycle is kept in the second register. There is given a synthesis example with applying the proposed method. The results of the research are shown. The research is conducted using the CAD tool Vivado by Xilinx. The experiments prove that the proposed approach allows reducing the hardware compared with such known methods as auto and one-hot of Vivado, and JEDI. Additionally, the proposed approach gives better results than a method based on the simultaneous replacement of inputs and encoding of COs. Compared to circuits of the three-block FSMs, the LUT counts are reduced by an average of 7.21% without significant reduction in the performance. Our approach loses in terms of power consumption (on average 9.62%) and power–time products (on average 10.44%). The gain in LUT counts and area–time products increases with the increase in the numbers of FSM states and inputs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference62 articles.

1. Digital Systems Design with FPGAs and CPLDs;Grout,2011

2. Field Programmable Gate Array Applications—A Scientometric Review

3. Embedded System Design: Modeling, Synthesis and Verification;Gajski,2009

4. Finite State Machines and Algorithmic State Machines: Fast and Simple Design of Complex Finite State Machines;Baranov,2018

5. Logic Synthesis of Control Automata;Baranov,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3