Gain Function-Based Visual Tracking Control for Inertial Stabilized Platform with Output Constraints and Disturbances

Author:

Liu XiangyangORCID,Yang Jun,Qiao PengyuORCID

Abstract

In this paper, a composite control strategy is proposed to deal with output constraints and disturbances of the visual tracking system for an inertial stabilized platform, which combines active disturbance compensation and the variable gain function technique. Firstly, the model of system considering multi-source disturbances is established, where the controlled output is the constrained position of the target in the image plane. Secondly, in order to avoid the tracked target being lost in the field of view of the camera, a control method based on the variable gain function technique is designed to ensure that the controlled output remains within the feasible range. Moreover, the active disturbance estimation and compensation method is introduced to improve the anti-disturbance ability of the system under the situation of small output error, obtaining satisfactory tracking performance. The stability analysis and the proof of constrained output are given following the controller design. Finally, results of simulation and experiments are shown to illustrate the promised advantages of the proposed composite control approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3