A Collaborative Path Planning Method for Intelligent Agricultural Machinery Based on Unmanned Aerial Vehicles

Author:

Shi Min1,Feng Xia2,Pan Senshan1,Song Xiangmei1,Jiang Linghui2

Affiliation:

1. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212000, China

2. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212000, China

Abstract

The development of agricultural farming has evolved from traditional agricultural machinery due to its efficiency and autonomy. Intelligent agricultural machinery is capable of autonomous driving and remote control, but due to its limited perception of farmland and field obstacles, the assistance of unmanned aerial vehicles (UAVs) is required. Although existing intelligent systems have greater advantages than traditional agricultural machinery in improving the quality of operations and reducing labor costs, they also produce complex operational planning problems. Especially as agricultural products and fields become more diversified, it is necessary to develop an adaptive operation planning method that takes into account the efficiency and quality of work. However, the existing operation planning methods lack practicality and do not guarantee global optimization because traditional planners only consider the path commands and generate the path in the rectangular field without considering other factors. To overcome these drawbacks, this paper proposes a novel and practical collaborative path planning method for intelligent agricultural machinery based on unmanned aerial vehicles. First, we utilize UAVs for obstacle detection. With the field information and operation data preprocessed, automatic agricultural machinery could be assisted in avoiding obstacles in the field. Second, by considering both the historical state of the current operation and the statistics from previous operations, the real-time control of agricultural machinery is determined. Therefore, the K-means algorithm is used to extract key control parameters and discretize the state space of agricultural machinery. Finally, the dynamic operation plan is established based on the Markov chain. This plan can estimate the probability of agricultural machinery transitioning from one state to another by analyzing data, thereby dynamically determining real-time control strategies. The field test with an automatic tractor shows that the operation planner can achieve higher performance than the other two popular methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference45 articles.

1. Development of autonomous navigation controller for agricultural vehicles;Yin;Int. J. Agric. Biol. Eng.,2020

2. Reduction of environmental pollution by using RTK-navigation in;Kelc;Int. J. Agric. Biol. Eng.,2019

3. A survey on smart agriculture: Development modes, technologies, and security and privacy challenges;Yang;IEEE/CAA J. Autom. Sinica,2021

4. Fountas, S., Mylonas, N., Malounas, I., Rodias, E., Hellmann Santos, C., and Pekkeriet, E. (2020). Agricultural robotics for field operations. Sensors, 20.

5. LiDAR-only based navigation algorithm for an autonomous agricultural robot;Malavazi;Comput. Electron. Agric.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3