Photovoltaic Array Dynamic Reconfiguration Based on an Improved Pelican Optimization Algorithm

Author:

Li Sheng1ORCID,Zhang Tianhong1,Yu Jiawei1

Affiliation:

1. School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China

Abstract

After prolonged operation, external objects may obstruct the photovoltaic (PV) array, resulting in prolonged partial shading. The dynamic reconfiguration of PV arrays uses a switch matrix to change the electrical positions of the PV cells in the array, and it is an effective method to solve the problem of partial shading. Most of the current dynamic reconfigurations only consider the optimization of power output. Neglecting the switch actions will increase the number of switch matrix actions, making the switch control more complex and reducing the lifespan of devices. To address power optimization and switch action optimization simultaneously during dynamic reconfiguration, this paper introduces a novel objective function. This function combines power optimization and switch action optimization in a weighted manner. Based on the novel function, the algorithm prioritizes optimizing the electrical positions of PV cells with larger shading values. This ensures that the PV array can improve its output while significantly reducing the number of switch actions. The Pelican Optimization Algorithm (POA) is improved and employed to optimize the proposed objective function. In terms of the output power optimization, the effectiveness of the novel objective function with the improved POA is validated by comparing and analyzing the reconfiguration results with the conventional objective functions under four shading scenarios. The results demonstrate that the novel objective function with the improved POA increases the output power by 30% in short and wide shadow and achieves the highest power output. Moreover, the tests conducted on dynamic reconfiguration results with different weights validate the effectiveness of the novel objective function in minimizing switching actions while improving power output.

Funder

University Student Innovation and Entrepreneurship Training Program Project of Jiangsu Province

Scientific Research Foundation of Nanjing Institute of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3