A Multilayered Audio Signal Encryption Approach for Secure Voice Communication

Author:

Abdallah Hanaa A.ORCID,Meshoul SouhamORCID

Abstract

In this paper, multilayer cryptosystems for encrypting audio communications are proposed. These cryptosystems combine audio signals with other active concealing signals, such as speech signals, by continuously fusing the audio signal with a speech signal without silent periods. The goal of these cryptosystems is to prevent unauthorized parties from listening to encrypted audio communications. Preprocessing is performed on both the speech signal and the audio signal before they are combined, as this is necessary to get the signals ready for fusion. Instead of encoding and decoding methods, the cryptosystems rely on the values of audio samples, which allows for saving time while increasing their resistance to hackers and environments with a noisy background. The main feature of the proposed approach is to consider three levels of encryption namely fusion, substitution, and permutation where various combinations are considered. The resulting cryptosystems are compared to the one-dimensional logistic map-based encryption techniques and other state-of-the-art methods. The performance of the suggested cryptosystems is evaluated by the use of the histogram, structural similarity index, signal-to-noise ratio (SNR), log-likelihood ratio, spectrum distortion, and correlation coefficient in simulated testing. A comparative analysis in relation to the encryption of logistic maps is given. This research demonstrates that increasing the level of encryption results in increased security. It is obvious that the proposed salting-based encryption method and the multilayer DCT/DST cryptosystem offer better levels of security as they attain the lowest SNR values, −25 dB and −2.5 dB, respectively. In terms of the used evaluation metrics, the proposed multilayer cryptosystem achieved the best results in discrete cosine transform and discrete sine transform, demonstrating a very promising performance.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. Accelerating embedded image processing for real time: A case study;Pedre;J. Real-Time Image Process.,2016

2. Flexible reference-counting-based hardware acceleration for garbage collection;Joao;ACM SIGARCH Comput. Arch. News,2009

3. A Review on Audio Encryption Algorithms Using Chaos Maps-Based Techniques;Albahrani;J. Cyber Secur. Mobil.,2021

4. Encryption of an Audio File on Lower Frequency Band for Secure Communication;Sheetal;Int. J. Adv. Res. Comput. Sci. Softw. Eng.,2013

5. Yahya, A., and Abdalla, A. (2009, January 13–16). An AES-Based Encryption Algorithm with Shuffling. Proceedings of the 2009 International Conference on Security & Management, SAM 2009, Las Vegas, NV, USA.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3