Flexible reference-counting-based hardware acceleration for garbage collection

Author:

Joao José A.1,Mutlu Onur2,Patt Yale N.1

Affiliation:

1. The University of Texas at Austin, Austin, TX, USA

2. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Languages featuring automatic memory management (garbage collection) are increasingly used to write all kinds of applications because they provide clear software engineering and security advantages. Unfortunately, garbage collection imposes a toll on performance and introduces pause times, making such languages less attractive for high-performance or real-time applications. Much progress has been made over the last five decades to reduce the overhead of garbage collection, but it remains significant. We propose a cooperative hardware-software technique to reduce the performance overhead of garbage collection. The key idea is to reduce the frequency of garbage collection by efficiently detecting and reusing dead memory space in hardware via hardware-implemented reference counting. Thus, even though software garbage collections are still eventually needed, they become much less frequent and have less impact on overall performance. Our technique is compatible with a variety of software garbage collection algorithms, does not break compatibility with existing software, and reduces garbage collection time by 31% on average on the Java DaCapo benchmarks running on the production build of the Jikes RVM, which uses a state-of-the-art generational garbage collector.

Publisher

Association for Computing Machinery (ACM)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multilayered Audio Signal Encryption Approach for Secure Voice Communication;Electronics;2022-12-20

2. Synthesized In-BramGarbage Collection for Accelerators with Immutable Memory;2022 32nd International Conference on Field-Programmable Logic and Applications (FPL);2022-08

3. FFCCD;Proceedings of the 49th Annual International Symposium on Computer Architecture;2022-06-11

4. MetaSys: A Practical Open-source Metadata Management System to Implement and Evaluate Cross-layer Optimizations;ACM Transactions on Architecture and Code Optimization;2022-03-24

5. Integrated Hardware Garbage Collection;ACM Transactions on Embedded Computing Systems;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3