Research on Analog Circuit Soft Fault Diagnosis Method Based on Mathematical Morphology Fractal Dimension

Author:

Lu Xinmiao,Yang Cunfang,Wu Qiong,Wang Jiaxu,Lu Zihan,Sun Shuai,Liu Kaiyi,Shao Dan

Abstract

It is difficult for traditional circuit-fault feature-extraction methods to accurately distinguish between nonlinear analog-circuit faults and analog-circuit faults with high fault rates and high diagnostic costs. To solve this problem, this paper proposes a method of mathematical morphology fractal dimension (VMD-MMFD) based on variational mode decomposition for soft-fault feature extraction in analog circuits. First, the signal is decomposed into variational modes to suppress the influence of environmental noise, and multiple high-dimensional eigenmode functions with different center frequencies are obtained. The fractal dimension of the signal feature information component IMF is calculated, and then, KPCA (Kernel Principal Component Analysis) is used to remove the overlapping and redundant parts of the data. The fault set obtained is used as the basis for judging the working state and the fault type of the circuit. The experimental results of the simulation circuits show that this method can be effectively used for circuit-fault diagnosis.

Funder

Heilongjiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference20 articles.

1. A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math;Peng;IEEE Trans. Circuits Syst. I Regul. Pap.,2005

2. Judgment and handling of “soft fault” of discrete component circuit;Zhu;Chin. Sci. Technol. J. Database Eng. Technol.,2016

3. Research on fractal method for soft fault diagnosis of nonlinear analog circuits;Lu;Model. Meas. Control. A,2017

4. Analog circuit fault diagnosis method based on nonlinear spectrum characteristics and kernel principal component analysis;Han;J. Electr. Technol.,2012

5. Research on Feature Extraction for Diagnostics of Analog Circuit Based on Factor Analysis;Wang;Comput. Meas. Control,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3