InfoMax Classification-Enhanced Learnable Network for Few-Shot Node Classification

Author:

Xu XinORCID,Du Junping,Song Jie,Xue Zhe

Abstract

Graph neural networks have a wide range of applications, such as citation networks, social networks, and knowledge graphs. Among various graph analyses, node classification has garnered much attention. While many of the recent network embedding models achieve promising performance, they usually require sufficient labeled nodes for training, which does not meet the reality that only a few labeled nodes are available in novel classes. While few-shot learning is commonly employed in the vision and language domains to address the problem of insufficient training samples, there are still two characteristics of the few-shot node classification problem in the non-Euclidean domain that require investigation: (1) how to extract the most informative knowledge for a class and use it on testing data and (2) how to thoroughly explore the limited number of support sets and maximize the amount of information transferred to the query set. We propose an InfoMax Classification-Enhanced Learnable Network (ICELN) to address these issues, motivated by Deep Graph InfoMax (DGI), which adapts the InfoMax principle to the summary representation of a graph and the patch representation of a node. By increasing the amount of information that is shared between the query nodes and the class representation, an ICELN can transfer the maximum amount of information to unlabeled data and enhance the graph representation potential. The whole model is trained using an episodic method, which simulates the actual testing environment to ensure the meta-knowledge learned from previous experience may be used for entirely new classes that have not been studied before. Extensive experiments are conducted on five real-world datasets to demonstrate the advantages of an ICELN over the existing few-shot node classification methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3