Meta-GNN
Author:
Affiliation:
1. University of Electronic Science and Technology of China, Chengdu, China
2. University of Maryland, Washington , MD, USA
3. Iowa State University, Ames, IA, USA
Funder
Office of Naval Research
National Science Foundation
National Natural Science Foundation of China
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3357384.3358106
Reference13 articles.
1. Chelsea Finn Pieter Abbeel and Sergey Levine. 2017. Model-agnostic metalearning for fast adaptation of deep networks. In ICML. Chelsea Finn Pieter Abbeel and Sergey Levine. 2017. Model-agnostic metalearning for fast adaptation of deep networks. In ICML.
2. Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In KDD. Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In KDD.
3. Will Hamilton Zhitao Ying and Jure Leskovec. 2017. Inductive representation learning on large graphs. In NIPS. Will Hamilton Zhitao Ying and Jure Leskovec. 2017. Inductive representation learning on large graphs. In NIPS.
4. Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph convolutional networks. In ICLR. Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph convolutional networks. In ICLR.
5. Qimai Li Zhichao Han and Xiao-Ming Wu. 2018. Deeper insights into graph convolutional networks for semi-supervised learning. In AAAI. Qimai Li Zhichao Han and Xiao-Ming Wu. 2018. Deeper insights into graph convolutional networks for semi-supervised learning. In AAAI.
Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A visible-infrared person re-identification method based on meta-graph isomerization aggregation module;Journal of Visual Communication and Image Representation;2024-10
2. Effective graph-neural-network based models for discovering Structural Hole Spanners in large-scale and diverse networks;Expert Systems with Applications;2024-09
3. Dual separated attention-based graph neural network;Neurocomputing;2024-09
4. Pre-Training and Prompting for Few-Shot Node Classification on Text-Attributed Graphs;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
5. Mastering Long-Tail Complexity on Graphs: Characterization, Learning, and Generalization;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3