Abstract
A low-power column-parallel gain-adaptive single-slope analog-to-digital converter (ADC) for CMOS image sensors is proposed. The gain-adaptive function is realized with the proposed switched-capacitor based gain control structure in which only minor changes from the traditional single-slope ADC are required. A switched-capacitor controlled dynamic bias comparator and a flip-reduced up/down double-data-rate (DDR) counter are proposed to reduce the power consumption of the column circuits. A 12-bit current steering digital-to-analog converter (DAC) with a two-dimensional gradient error tolerant switching scheme is adopted in the ramp generator to improve the linearity of the ADC. The proposed techniques were experimentally verified in a prototype chip fabricated in the TSMC 180 nm CMOS process. A single-column ADC consumes a total power of 63.2 μ W and occupies an area of 4.48 μ m × 310 μ m. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) of the ADC are −0.43/+0.46 least significant bit (LSB) and −0.84/+1.95 LSB. A 13-bit linear output is acquired in nonlinearity within 0.08% of the full scale after calibration.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献