Attention-LSTM-Attention Model for Speech Emotion Recognition and Analysis of IEMOCAP Database

Author:

Yu YeongukORCID,Kim Yoon-JoongORCID

Abstract

We propose a speech-emotion recognition (SER) model with an “attention-long Long Short-Term Memory (LSTM)-attention” component to combine IS09, a commonly used feature for SER, and mel spectrogram, and we analyze the reliability problem of the interactive emotional dyadic motion capture (IEMOCAP) database. The attention mechanism of the model focuses on emotion-related elements of the IS09 and mel spectrogram feature and the emotion-related duration from the time of the feature. Thus, the model extracts emotion information from a given speech signal. The proposed model for the baseline study achieved a weighted accuracy (WA) of 68% for the improvised dataset of IEMOCAP. However, the WA of the proposed model of the main study and modified models could not achieve more than 68% in the improvised dataset. This is because of the reliability limit of the IEMOCAP dataset. A more reliable dataset is required for a more accurate evaluation of the model’s performance. Therefore, in this study, we reconstructed a more reliable dataset based on the labeling results provided by IEMOCAP. The experimental results of the model for the more reliable dataset confirmed a WA of 73%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference30 articles.

1. Towards a Small Set of Robust Acoustic Features for Emotion Recognition: Challenges

2. Emotion recognition from speech: a review

3. Emotion recognition in the noise applying large acoustic feature sets;Schuller;Proc. Speech Prosody,2006

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3