Hand Movement Activity-Based Character Input System on a Virtual Keyboard

Author:

Rahim MdORCID,Shin JungpilORCID

Abstract

Nowadays, gesture-based technology is revolutionizing the world and lifestyles, and the users are comfortable and care about their needs, for example, in communication, information security, the convenience of day-to-day operations and so forth. In this case, hand movement information provides an alternative way for users to interact with people, machines or robots. Therefore, this paper presents a character input system using a virtual keyboard based on the analysis of hand movements. We analyzed the signals of the accelerometer, gyroscope, and electromyography (EMG) for movement activity. We explored potential features of removing noise from input signals through the wavelet denoising technique. The envelope spectrum is used for the analysis of the accelerometer and gyroscope and cepstrum for the EMG signal. Furthermore, the support vector machine (SVM) is used to train and detect the signal to perform character input. In order to validate the proposed model, signal information is obtained from predefined gestures, that is, “double-tap”, “hold-fist”, “wave-left”, “wave-right” and “spread-finger” of different respondents for different input actions such as “input a character”, “change character”, “delete a character”, “line break”, “space character”. The experimental results show the superiority of hand gesture recognition and accuracy of character input compared to state-of-the-art systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. One-shot random forest model calibration for hand gesture decoding;Journal of Neural Engineering;2024-01-16

2. Virtual Keyboard System Based on IMU Glove;2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR);2023-12-08

3. One-Shot Random Forest Model Calibration for Hand Gesture Decoding;2023-07-25

4. Electromyogram (EMG) Signal Classification Based on Light-Weight Neural Network with FPGAs for Wearable Application;Electronics;2023-03-15

5. EMG Data Collection for Multimodal Keystroke Analysis;2022 12th International Conference on Advanced Computer Information Technologies (ACIT);2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3