Electromyogram (EMG) Signal Classification Based on Light-Weight Neural Network with FPGAs for Wearable Application

Author:

Choi Hyun-Sik1ORCID

Affiliation:

1. Department of Electronic Engineering, College of IT Convergence Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

Recently, the application of bio-signals in the fields of health management, human–computer interaction (HCI), and user authentication has increased. This is because of the development of artificial intelligence technology, which can analyze bio-signals in numerous fields. In the case of the analysis of bio-signals, the results tend to vary depending on the analyst, owing to a large amount of noise. However, when a neural network is used, feature extraction is possible, enabling a more accurate analysis. However, if the bio-signal time series is analyzed as is, the total neural network increases in size. In this study, to accomplish a light-weight neural network, a maximal overlap discrete wavelet transform (MODWT) and a smoothing technique are used for better feature extraction. Moreover, the learning efficiency is increased using an augmentation technique. In designing the neural network, a one-dimensional convolution layer is used to ensure that the neural network is simple and light-weight. Consequently, the light-weight attribute can be achieved, and neural networks can be implemented in edge devices such as the field programmable gate array (FPGA), yielding low power consumption, high security, fast response times, and high user convenience for wearable applications. The electromyogram (EMG) signal represents a typical bio-signal in this study.

Funder

Basic Science Research Program through the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3