Abstract
A gastric acid battery and its charge storage in a capacitor are a simple and safe method to provide a power source to an ingestible device. For that method, the electromotive force of the battery should be boosted for storing a large amount of energy. In this study, we have proposed an all-p-channel metal-oxide semiconductor (pMOS)-based cross-coupled voltage multiplier (CCVM) utilizing single-well CMOS technology to achieve a voltage boosting higher than from a conventional complementary MOS (CMOS) CCVM. We prototyped a custom integrated circuit (IC) implemented with the above CCVMs and a ring oscillator as a clock source. The characterization experiment demonstrated that our proposed pMOS-based CCVM can boost the input voltage higher because it avoids the body effect problem resulting from an n-channel MOS transistor. This circuit was also demonstrated to significantly reduce the circuit area on the IC, which is advantageous as it reduces the chip size or provides an area for other functional circuits. This simple circuit structure based on mature and low-cost technologies matches well with disposal applications such as an ingestible device. We believe that this pMOS-based CCVM has the potential to become a useful energy harvesting circuit for ingestible devices.
Funder
Japan Science and Technology Agency
Kato Foundation for Promotion of Science
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献