Self-Adaptive Multi-Task Differential Evolution Optimization: With Case Studies in Weapon–Target Assignment Problem

Author:

Zheng XiaolongORCID,Zhou Deyun,Li Na,Wu TaoORCID,Lei YuORCID,Shi JiaoORCID

Abstract

Multi-task optimization (MTO) is related to the problem of simultaneous optimization of multiple optimization problems, for the purpose of solving these problems better in terms of optimization accuracy or time cost. To handle MTO problems, there emerges many evolutionary MTO (EMTO) algorithms, which possess distinguished strategies or frameworks in the aspect of handling the knowledge transfer between different optimization problems (tasks). In this paper, we explore the possibility of developing a more efficient EMTO solver based on differential evolution by introducing the strategies of a self-adaptive multi-task particle swarm optimization (SaMTPSO) algorithm, and by developing a new knowledge incorporation strategy. Then, we try to apply the proposed algorithm to solve the weapon–target assignment problem, which has never been explored in the field of EMTO before. Experiments were conducted on a popular MTO test benchmark and a WTA-MTO test set. Experimental results show that knowledge transfer in the proposed algorithm is effective and efficient, and EMTO is promising in solving WTA problems.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Shaanxi Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of Assignment Problem;5th EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing;2023

2. A Modified RL-IGWO Algorithm for Dynamic Weapon-Target Assignment in Frigate Defensing UAV Swarms;Electronics;2022-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3