A Modified RL-IGWO Algorithm for Dynamic Weapon-Target Assignment in Frigate Defensing UAV Swarms

Author:

Nan MingyuORCID,Zhu Yifan,Kang Li,Wang Tao,Zhou XinORCID

Abstract

Unmanned aerial vehicle (UAV) swarms have significant advantages in terms of cost, number, and intelligence, constituting a serious threat to traditional frigate air defense systems. Ship-borne short-range anti-air weapons undertake terminal defense tasks against UAV swarms. In traditional air defense fire control systems, a dynamic weapon-target assignment (DWTA) is disassembled into several static weapon target assignments (SWTAs), but the relationship between DWTAs and SWTAs is not supported by effective analytical proof. Based on the combat scenario between a frigate and UAV swarms, a model-based reinforcement learning framework was established, and a DWAT problem was disassembled into several static combination optimization (SCO) problems by means of the dynamic programming method. In addition, several variable neighborhood search (VNS) operators and an opposition-based learning (OBL) operator were designed to enhance the global search ability of the original Grey Wolf Optimizer (GWO), thereby solving SCO problems. An improved grey wolf algorithm based on reinforcement learning (RL-IGWO) was established for solving DWTA problems in the defense of frigates against UAV swarms. The experimental results show that RL-IGWO had obvious advantages in both the decision making time and solution quality.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneous Multi-UAV Mission Planning Considering Obstacle Avoidance and UAV Motion Model;2023 5th International Conference on Robotics and Computer Vision (ICRCV);2023-09-15

2. Control over Distributed Topology of Wire-less Sensor Network based on Power Optimization;2023 4th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3